DR smq&t..ﬁ.-,
flEd i

Aided College of Govt. of AP
STCO-001

NAAC ¢A’ Grade College
Vuyyuru, Krishna (Dt).,Andhra Pradesh-521165

Statistical Computing

VALUE ADDED COURSE

VAC CODE
On 01-04-2023 to 10-05-2023

TITLE
Duration of the Course: S0DAYS

Growers Siddharatha Degree College of Arts
Organized By
Department of Computer Science

and Science

AdusumilliGopalakrishnaiah& Sugarcane
Autonomous College ::

&t OF ARTS & SCIENC,
&

LLYhn)
VUYYURU

Al Foad
-

=
o
o
w
w
3
w
[

TELET.

& ®
¥ yvnaas 958 9

13 '_;;’::4
S

i |t
T e T B sy R L s TRi T T R MR 2oy B R L T T AT A B sy R 77 AT b IR T DT e e T T A TR R T B R s T TR
SRt DT 3 .ﬁm._v T e B S T P IR .ﬁm._v US| N 13 .Frl_v R T huﬂ._v e TRL R pﬂ._v R r .
,n...r..,.m..émrnwzmn sk g L] e ...wﬂrrnwzm e 1] tet .,....._...,.mﬁ.mr._.m i L b e ..,.wd»mmwzmn s g b e e e .F e .,n.,:...._...,.w..émrnﬁzmn i oy :.:.n....—...wdvr.ﬁzm s

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh
(Managed by: Siddhartha Academy of General & Technical Education, Vijayawada-10)
An Autonomous College in the Jurisdiction of Krishna University
Accredited by NAAC with “A” Grade ISO 9001:2015 Certified Institution

%
®
A
m
m
(@)

=

O

G. &S.G. SIDDHAR
N319S B SLyV 40 3°

ﬁ
(&,
pY =S
cl
2\
*
\90

DEPARTMENT OF COMPUTER SCIENCE

Value Added Course in Statistical Computing

Name of the Lecturer : Sri. T. Naga Prasada Rao

Class : IT B.Sc (MSCS)
Duration of the Course 30 Days

VAC Code : STCO-001

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course in Statistical Computing

Objectives:
This course will review and expand upon core topics in probability and statistics through the
study and practice of data analysis and graphical interpretation using ‘R’.

Methodology:
1) Lecture-based Learning

2) Experimental Learning
3) ICT

Duration:
30 Days

A.G. & S.G. Siddhartha Degree College of Arts & Science

Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course in Statistical Computing

Student Enrolment Sheet

Class: II B.Se. (MSCS)

S. No Roll No. Name of the Student Signature
1 2155301 | K. Dharani k dhovors
2 2155302 | G. Divya G DIVYa
3 2155303 | M. Sri Lakshmi . sxidokshmi
4 2155304 S. Sai Sowmya LS“ . So? Sow Y
5 2155305 | A.Sushanth A. sushenth
6 2155306 | B. Manoj Phanindra R Manoy praniedry
7 2155307 | J. Keerthi Priya 1 Recrdly piS ya
8 2155308 | K. Alekhya K. Alekhya_
? 2155310 | N. Anusha . Pros [1 QA
10 2155311 | A. Chakradhar A. chatewdhas
Ll 2155312 | MD. Khadeera Begam Mp. lehadeera Bejam
12 2155314 | J. Shansi Lakshmi . Shoner lakehmS
13 2155315 | K. Tulasi k. Tulash
14 2155316 | P. Hima Sri P. Himo G5
15 2155317 | K. Naga Sravani - . Nage Gvononi
16 2155319 | M. Karuna Sri Kavona OrF
17 2155320 | P. Phani Supraja P. ?Lg a3 gu Pyoye~
18 2155321 | K. Hema Sri K. Hewmps 5\?
19 2155322 | R. Durga Bhavani R Do ;i B}\auar\%
20 2155323 | D. Naga Gireesha D. Maga GYyeecha
ORI Q\iiim %)—/

-ﬂwmn

P 1 K- X N W W _| samam g & A0

Adusumill Gopa!ahnstAa wh& Suga rtanel -

Sidetarita Degn:e wueqe TIATS & :.\Clultc,
Vuvvuru-521 165. Krishna Dictriet

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course in Statistical Computing

Date(s) From: 01-04-2023 to: 10-05-2023

Content Module No.

Introduction to R Programming, Data types of R, Expressions,
Variables, Functions

Conditional Statements, Looping statements, Control flow functions I

Arrays, Matrix, Vectors, Factors, Packages Il

Data frames, Data frame access, ordering data frames, functions of
data frames

What is R:

R is a programming language and environment used for statistical computing and graphics. It
was first released in 1993 and has since become a popular tool for data analysis and research in
academia, industry, and government.

Was created by PP Was created at
Ross Ihaka and Auckland New

Robert Zealand
Gentleman

Named after
first names of

first 2 authors Programming

= Project considered
In 1992

Initial version
released in 1995

R is open source software, which means that it is free to use, distribute, and modify. It is highly
extensible and has a large collection of packages and libraries that enable users to perform a wide
range of statistical analyses, data visualization, and machine learning tasks.

R is widely considered to be one of the most powerful and flexible tools for data analysis
available today.

Data types in R:

In R, there are several data types that are used to store and manipulate data. Some of the

commonly used data types in R are:

e Logical:
In R, the logical data type is used to store Boolean values which can take on one of two
possible values: TRUE or FALSE. The logical data type is commonly used in conditional
statements and logical operations.For example, consider the following code:

X<-5

y<-10

L<-xXx< y
In this code, we first assign the value 5 to the variable x and the value 10 to the variable y.
We then use the logical operator "<" to compare x and y, which returns TRUE because X is
less than y. This value is then assigned to the variable z.

e Numeric:
In R, the numeric data type is used to store numbers, including integers and real numbers.
Numeric values are represented by the "numeric” data type in R.Numeric variables can be
used in a variety of operations, including arithmetic operations such as addition, subtraction,
multiplication, and division. For example:

a<-5
b<-10
c<-a+b
d<-b-a

e<-a*b
f<-b/a

In this code, we first assign the values 5 and 10 to the variables a and b, respectively. We
then perform various arithmetic operations using these variables, including addition (c),
subtraction (d), multiplication (e), and division (f).

Numeric variables can also be used in statistical calculations and analysis, as well as in
creating graphs and visualizations. In fact, R has many built-in functions and packages that
are specifically designed for statistical analysis and visualization.

Integer:
In R, the integer data type is used to store whole numbers. Integers are represented by the

"integer" data type in R.Integers can be used in a variety of operations, including arithmetic
operations such as addition, subtraction, multiplication, and division. For example:

a<-5L

b <-10L
c<-a+b
d<-b-a
e<-a*b
f<-bl/a

In this code, we first assign the values 5 and 10 to the variables a and b, respectively, using
the "L" suffix to indicate that they should be treated as integers. We then perform various
arithmetic operations using these variables, including addition (c), subtraction (d),
multiplication (e), and division (f).

Character:
A character data type represents text or string values. A character object is created by
enclosing text within quotes (either single or double quotes). For example:

my_string <- "Hello, world!"

In this example, my_string is a character object that contains the text "Hello, world!". Note
that the quotes are required to indicate that this is a character value.

Double:
A double data type is used to represent floating-point numbers (i.e., numbers with a decimal

point). Double precision is the default for R's numeric data type.For example, you can create
a double variable my_var with the value 3.14159 like this:

my_var <- 3.14159

R provides a variety of operators and functions for working with numeric data, including the
basic arithmetic operators (+, -, *, /), as well as more advanced functions for trigonometry,
logarithms, and other mathematical operations.

Complex:
A complex data type is used to represent numbers with both a real and imaginary component.

Complex numbers are created using the complex() function or by appending an i or | to the
imaginary component. For example:

Create a complex number using the complex() function
my_complex <- complex(real = 3, imaginary = 4)

Create a complex number using the i notation
my_complex2 <- 2 + 3i

In these examples, my_complex and my_complex2 are both complex numbers. my_complex
has a real component of 3 and an imaginary component of 4, while my_complex2 has a real
component of 2 and an imaginary component of 3.

e Raw:
A raw data type is used to represent raw bytes of data. Raw vectors are created using the
raw() function or by using a hexadecimal notation. For example:

Create a raw vector using the raw() function
my_raw <- raw(4)
my_raw[1] <- as.raw(0x4c)
my_raw[2] <- as.raw(0x6f)
my_raw[3] <- as.raw(0x72)
my_raw[4] <- as.raw(0x65)

Create a raw vector using hexadecimal notation
my_raw2 <- as.raw(c(0x48, 0x65, 0x6c¢, 0x6c¢, 0x6f))

In these examples, my_raw and my_raw2 are both raw vectors. my_raw contains the raw
bytes for the ASCII characters "L", 0", "r", and "e", while my_raw?2 contains the raw bytes
for the ASCII characters "H", "e", "I", "I", and "0".

Raw vectors are typically used to represent binary data, such as images, audio files, or
network packets. R provides a variety of functions for working with raw vectors, including
functions for reading and writing binary data to files, converting raw data to other formats,
and manipulating the bytes within a raw vector.

Expressions:
In R, an expression is a set of instructions that can be evaluated to produce a value or result.

Expressions can include arithmetic or logical operations, function calls, and variable
assignments.For example, the following code is an expression that calculates the sum of two
numbers:

2+3

This expression evaluates to the value 5, which can be printed or assigned to a
variable.Expressions can also include function calls, such as the following code:

sqrt(25)

This expression calls the sqrt() function with an argument of 25, which evaluates to the value 5.
In addition to simple expressions, R also supports more complex expressions that combine
multiple operations and function calls. For example, the following code calculates the factorial of
a number:

factorial<- function(n)

if (n==0)
{
return(1)
}
Else
{
return(n * factorial(n - 1))
}
}

factorial(5)

This expression defines a function called factorial() that recursively calculates the factorial of a
number. When the expression factorial(5) is evaluated, it returns the value 120.

Variables:

Variables are used to store data values that can be used in expressions or operations. A variable
is created by assigning a value to a name using the assignment operator <- or =. The name of the
variable can contain letters, numbers, underscores, and dots, but it cannot start with a number or
a dot, and it cannot be a reserved keyword.For example, to create a variable called x with a value
of 5, we can use the following code:

X<-5
We can then use the variable x in an expression or operation, such as:
y<-x+2

This code assigns the result of adding 2 to the value of x to a new variable called y.

Variables can store values of different types, such as numbers, strings, logical values, and more
complex data structures like arrays and data frames. The type of a variable is determined by the
value it holds, and can be checked using the class() function.

Variables in R are mutable, which means that their values can be changed by assigning a new
value to the same name. For example, we can change the value of x by assigning a new value to
it:

X <-10

Overall, variables are a fundamental concept in programming and are used extensively in R to
store, manipulate, and analyse data.

Functions:

A function is a set of instructions that perform a specific task and can be called repeatedly with
different inputs. R provides a series of in-built functions, and it allows the user to create their
own functions. Functions are used to avoid repeating the same task and to reduce complexity. A
function should be:

Written to carry out a specified task.

May or may not have arguments

Contain a body in which our code is written.

May or may not return one or more output values.

Function Definition:
An R function is created by using the keyword 'function’. There is the following syntax of R
function:

func_name <- function(arg_1, arg_2, ...)

{
Function body

}

Here is an example of a simple function in R:

square<- function(x)
{

result<- x"2
return(result)

}

This function takes an input parameter X, calculates its square, and returns the result as an
output value. To call the function with a specific input value, we can simply pass the value
as an argument:

y <- square(5)

This code calls the square() function with an input value of 5, and assigns the resulting
output value (25) to the variable y.

Conditional Statements:
Conditional statements in R allow you to execute different blocks of code based on the result of a
logical test.

1) if Statement:
The most common conditional statement is the if ~ statement, which has the following
syntax:

if (condition)
{
Code to execute if the condition is TRUE

}

For example, the following code uses an if statement to print a message if a
number is positive:

X<-5

if (x>0)

{

print("x is positive™)

}

This code checks whether x is greater than 0, and if itis, prints the message "X is
positive".

2) if-else statement:
This statement allows you to execute one block of code if a condition is TRUE, and
another block of code if the condition is FALSE. The basic syntax of an if-else statement
in R is as follows:

if (condition)

{
code to execute if condition is TRUE
}
else
{
code to execute if condition is FALSE
}
For example:
X<--5
if (x> 0)
{ P
print("X is positive")
}
else
{ o
print("X is negative or zero")
}

Loops:
Loops in R allow you to execute the same block of code multiple times, based on certain

conditions or criteria. The most common types of loops are ‘for’ and ‘while’ loops.

1) For Loop
The “for loop’ has the following syntax:

for (variable in sequence)

{

Code to execute for each value of the variable

}

For example, the following code uses a for loop to print the first five positive integers:

for (iin 1:5)
{

print(i)
}

This code loops through the sequence 1:5, and for each value of i, prints the value to the
console.

2) While loop:
The while loop has the following syntax:

while (condition)

{

Code to execute while the condition is TRUE

}

For example, the following code uses a while loop to print the first five positive even
numbers:

i<-2
count<-0
while (count < 5)
{
print(i)
i<-i+2
count<- count + 1

}

This code uses a while loop to increment the value of i by 2 for each iteration, until it prints
the first 5 even numbers.

Control Flow Functions:
Control flow functions in R allow you to perform various control operations, such as breaking
out of loops, skipping iterations, and restarting loops. The most common control flow functions

are break, next, and return.

1) Break statement:
The break statement is used to break out of a loop prematurely:

for (i in 1:10)
{
if (i==05)
{

break

}

print(i)
}

This code loops through the sequence 1:10, and if the value of i is 5, it breaks out of the
loop prematurely.

2) next statement:
The next statement is a control flow statement in R that allows you to skip to the next

iteration of a loop without executing the remaining code in the current iteration. Here is an
example of using the next statement in R:

for (i in 1:10)
{
if (1 %% 2==0)
{
next
}
print(i)

In this example, the loop iterates over the values of i from 1 to 10. Inside the loop, the if
statement tests whether i is even (i.e., whether it is divisible by 2 using the modulus operator
%%). If i is even, the next statement is executed, which skips to the next iteration of the loop
without executing the print(i) statement. If i is odd, the print(i) statement is executed, which
prints the value of i.

3) return statement:
The return statement is a control flow statement in R that allows you to terminate a function
and return a value to the calling environment. When a return statement is encountered inside
a function, the function immediately stops executing and returns the specified value to the
calling environment.Here is an example of using the return statement in R:

sum_squared <- function(x, y)
{
result<- x"2 + y"2
return(result)
}
z <- sum_squared(3, 4)
print(z)

In this example, the sum_squared function takes two arguments (x and y) and returns the
sum of their squares. Inside the function, the result variable is assigned the value of x"2 +
y~2, and then the return(result) statement is executed to return the value of result to the
calling environment. Outside the function, the value returned by sum_squared(3, 4) is
assigned to the variable z, and then the print(z) statement is executed to print the value of z,
which is 25 (i.e., the sum of 372 and 4"2).

Array:
An array is a data structure that allows you to store a collection of values of the same data type.

An array can have one or more dimensions, and each dimension can have a specific length.To
create an array in R, you can use the array() function, which has the following syntax:

array(data, dim, dimnames = NULL)

The data parameter specifies the values to be stored in the array, while the dim parameter
specifies the dimensions of the array. The dimnames parameter is an optional argument that can
be used to specify names for the dimensions.

Here is an example of how to create a simple 2-dimensional array in R:

Create a 2x3 array
my_array <- array(c(1:6), dim =c(2, 3))

Print the array
print(my_array)

This code creates a 2-dimensional array with 2 rows and 3 columns, and stores the numbers 1
through 6 in the array. The resulting output will look like this:

[1] [,2] [,3]
1] 1 3 5
2] 2 4 6

In R, arrays can be indexed using square brackets [], where each index corresponds to a specific
dimension of the array. For example, to access the value at row 1, column 2 of the my_array
array, you can use the following code:

value<- my_array[1, 2]

This code assigns the value 3 to the variable value, which corresponds to the value at row 1,
column 2 of the array.

Matrix:

A matrix is a two-dimensional data structure that contains a collection of values of the same data
type. The matrix can be thought of as a grid or table of values, where each row represents a
separate observation or case, and each column represents a separate variable.To create a matrix
in R, you can use the matrix() function, which has the following syntax:

matrix(data, nrow, ncol, byrow = FALSE, dimnames = NULL)

The data parameter specifies the values to be stored in the matrix, while the nrow and ncol
parameters specify the number of rows and columns in the matrix, respectively. The byrow
parameter is an optional argument that can be used to specify whether the values should be filled
in by row or by column, and the dimnames parameter is an optional argument that can be used to
specify names for the rows and columns.Here is an example of how to create a simple 2x3 matrix
inR:

Create a 2x3 matrix

my_matrix <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)
Print the matrix

print(my_matrix)

This code creates a 2x3 matrix with the values 1 through 6, and stores the matrix in the variable
my_matrix. The resulting output will look like this:

In R, matrices can be indexed using square brackets [], where the first index corresponds to the
row number and the second index corresponds to the column number. For example, to access the
value in row 1, column 2 of the my_matrix matrix, you can use the following code:

value<- my_matrix[1, 2]

This code assigns the value 3 to the variable value, which corresponds to the value at row 1,
column 2 of the matrix.

Vectors:

A vector is a one-dimensional data structure that contains a collection of values of the same data
type. The vector can be thought of as a simple list or array of values, and is often used to store a
single variable or observation.

To create a vector in R, you can use the ¢() function, which is short for "combine”. This function
takes one or more values as arguments and combines them into a vector. Here is an example of
how to create a simple vector in R:

Create a vector
my_vector <-c¢(1, 2, 3,4, 5)
Print the vector
print(my_vector)

This code creates a vector with the values 1 through 5, and stores the vector in the variable
my_vector. The resulting output will look like this:

[1]112345

In R, vectors can be indexed using square brackets [], where each index corresponds to a
specific element of the vector. For example, to access the value at position 3 of the my_vector
vector, you can use the following code:

value<- my_vector[3]

This code assigns the value 3 to the variable value, which corresponds to the third element of the
vector.

Factors:

A factor is a data structure that represents categorical data. Factors are used to store data that can
take on a limited number of possible values, such as nominal or ordinal data. Factors are useful
in statistical analysis because they allow you to easily summarize and analyze categorical data.
To create a factor in R, you can use the factor() function, which takes one or more vectors as
arguments and returns a factor object. Here is an example of how to create a simple factor in R:

Create a factor
my_factor <- factor(c("red", "green", "
Print the factor
print(my_factor)

blue", "red", "green™))

This code creates a factor with the values "red", "green™, and "blue", and stores the factor in the
variable my_factor. The resulting output will look like this:

[1] red green blue red green

Levels: blue green red
In this example, the factor has three possible levels: "blue™, "green”, and "red". The levels of a
factor are determined by the unique values in the vector that is used to create the factor.
You can also assign labels to the levels of a factor using the levels() function. For example:

Assign labels to the levels of the factor

levels(my_factor) <- ¢("R", "G", "B")

Print the factor with labels

print(my_factor)
This code assigns the labels "R", "G", and "B" to the levels of the my_factor factor, and prints
the factor with the labels.

R Packages:
A package is a collection of functions, data sets, and other resources that are designed to work

together to solve a specific problem or accomplish a specific task. R packages are created and
maintained by developers and are hosted on public repositories such as CRAN (Comprehensive
R Archive Network) and GitHub.

To use a package in R, you first need to install it using the install.packages() function. For
example, to install the dplyr package, which is a popular package for data manipulation, you can
run the following code:

install.packages("dplyr™)
Once the package is installed, you can load it into your R session using the library() function:
library(dplyr)

This makes all of the functions and data sets in the dplyr package available for use in your R
code.

In addition to the base R functions and packages, there are thousands of third-party packages
available for R that can be used for a wide range of tasks, including data manipulation, statistical
analysis, machine learning, data visualization, and more. Some popular packages in R include
ggplot2, tidyr, caret, randomForest, and shiny.

If you want to create your own package in R, you can use the devtools package to help you set
up and manage the package. The devtools package provides functions for creating and building
packages, adding documentation, and testing the package code.

Data frames:

A data frame is a two-dimensional array-like structure or a table in which a column contains
values of one variable, and rows contains one set of values from each column. A data frame is a
special case of the list in which each component has equal length.

A data frame is used to store data table and the vectors which are present in the form of a list in a
data frame, are of equal length.In a simple way, it is a list of equal length vectors. A matrix can
contain one type of data, but a data frame can contain different data types such as numeric,
character, factor, etc.

There are following characteristics of a data frame.

e The columns name should be non-empty.

e The rows name should be unique.

e The data which is stored in a data frame can be a factor, numeric, or character type.

e Each column contains the same number of data items.

Data frames in R are usually created by importing data from external sources, such as CSV files
or databases. They can also be constructed directly in R using functions like data.frame() or by
converting other types of R objects like matrices or lists using functions like as.data.frame().
Once a data frame is created, you can manipulate and analyze the data using a wide range of
built-in functions and packages in R. Some common operations include selecting, filtering, and
sorting rows and columns, calculating summary statistics, and creating visualizations.

Here is an example of creating a simple data frame in R:

create a data frame
df<- data.frame

(

name = c("Alice", "Bob", "Charlie"),

age = ¢(25, 30, 35),
gender : C(l'F", IIMII’ IIMII)
)

print the data frame
print(df)

This will create a data frame with three columns (name, age, gender) and three
rows (one for each person), and print it to the console:

name age gender
1 Alice 25 F
2 Bob 30 M
3Charlie 35 M

Data frame access:
In R, you can access and manipulate data frames using various methods. Here are some common
ways to access data frames:

Consider the following data frame named df:

Creating a sample data frame
df<- data.frame(

Name = c("John", "Jane", "Alice", "Bob"),

Age = ¢(25, 30, 35, 40),

Country = ¢("USA", "Canada", "UK", "Australia")
)

Print the data frame
Output:

Name Age Country
1 John 25 USA
2 Jane 30 Canada
3 Alice 35 UK
4 Bob 40 Australia

Accessing Columns:
You can access columns of a data frame using the dollar sign $ or square brackets [] notation.
Here's an example:

Using the dollar sign notation

df$column_name

Accessing the "Name" column using the dollar sign notation
df$Name

Output:
[1] "John™ "Jane™ "Alice" "Bob"

Using the square brackets notation
df["column_name"]

Accessing the "Country™ column using the square brackets notation
df["Country"]

Output:

1 USA

2 Canada
3 UK

4 Australia

Accessing Rows:
You can access rows of a data frame using the square brackets [] notation. Here's an example:

Accessing a single row
df[row_index,]

Accessing the second row
dff2,]

Output:
Name Age Country
2 Jane 30 Canada

Accessing multiple rows
df[row_indices,]

Accessing multiple rows (3rd and 4th rows)
df[3:4,]

Output:

Name Age Country
3Alice 35 UK
4 Bob 40 Australia

Accessing Specific Cells:

You can access individual cells in a data frame using the square brackets [] notation with row

and column indices. Here's an example:
df[row_index, column_index]

Accessing the cell in the third row and second column
dff3, 2]

Output:
[1] 35

Accessing Rows Based on Conditions:

You can use logical conditions to access rows based on specific criteria. Here's an

example:

Accessing rows where a condition is true
df[condition,]

Accessing rows where the age is greater than or equal to 30
dffdf$Age >= 30,]

Output:

Name Age Country
2 Jane 30 Canada
3Alice 35 UK
4 Bob 40 Australia

Ordering data frames:
In R, you can order or sort a data frame based on specific columns using the order() function or
the dplyr package's arrange() function. Let's explore both approaches with examples.

Using the order() function
Consider the following data frame df:

Creating a sample data frame
df<- data.frame(

Name = c¢("John", "Jane", "Alice", "Bob"),

Age = ¢(25, 30, 35, 40),

Country = ¢("USA", "Canada", "UK", "Australia")
)

Print the data frame
df

Output:

Name Age Country
1 John 25 USA
2 Jane 30 Canada
3 Alice 35 UK
4 Bob 40 Australia

Now, let's order the data frame based on the Age column:
Ordering the data frame by Age column
df ordered <- df[order(df$Age),]

Print the ordered data frame
df ordered

Output:

Name Age Country
1 John 25 USA
2 Jane 30 Canada
3 Alice 35 UK
4 Bob 40 Australia

The data frame df_ordered is now sorted based on the Age column in ascending order.
Using the arrange() function from dplyr package

First, make sure you have the dplyr package installed by running install.packages("dplyr"). Then,
you can load the package and use the arrange() function:

Loading the dplyr package
library(dplyr)

Ordering the data frame by Age column using arrange()
df_ordered <- arrange(df, Age)

Print the ordered data frame
df ordered

Output:

Name Age Country
1 John 25 USA
2 Jane 30 Canada
3 Alice 35 UK
4 Bob 40 Australia

Functions for data frames:
In R, there are several useful functions available for working with data frames. Here are some
commonly used functions for data frames:

Creating a sample data frame
df<- data.frame(

Name = c("John", "Jane", "Alice", "Bob"),

Age = ¢(25, 30, 35, 40),

Country = ¢("USA", "Canada", "UK", "Australia")
)

Print the data frame
df

Output:

Name Age Country
1 John 25 USA
2 Jane 30 Canada
3 Alice 35 UK
4 Bob 40 Australia

e head(df) and tail(df): These functions display the first few rows (head()) or last few rows
(tail()) of a data frame. By default, they show the first/last six rows, but you can specify a
different number of rows if needed.

Displaying the first few rows of the data frame
head(df)

Output:

Name Age Country
1 John 25 USA
2 Jane 30 Canada
3Alice 35 UK

Displaying the last few rows of the data frame
tail(df)

Output:

Name Age Country
1 John 25 USA
2 Jane 30 Canada
3 Alice 35 UK
4 Bob 40 Australia

nrow(df) and ncol(df): These functions return the number of rows (nrow()) or number of
columns (ncol()) in a data frame.

nrow(df) and ncol(df):

Getting the number of rows in the data frame

nrow(df)

Output:
[1]4

Getting the number of columns in the data frame
ncol(df)

Output:
[1]13

dim(df): This function returns a vector containing the dimensions of the data frame, i.e.,
the number of rows and columns.

Getting the dimensions of the data frame

dim(df)

Output:
[1]143

names(df) and colnames(df): These functions return the column names of a data frame as
a character vector.

Getting the column names of the data frame

names(df)

Output:
[1] "Name™ "Age" "Country"

summary(df): This function provides a summary of the data frame, including descriptive
statistics (e.g., minimum, maximum, mean) for each numeric column and frequency
counts for each categorical column.

Getting the summary of the data frame

summary(df)
Output:

Name Age Country
Length:4 Min. :25.00 Length:4

Class :character 1st Qu.:27.50 Class :character
Mode :character Median :32.50 Mode :character
Mean :32.50

3rd Qu.:37.50
Max. :40.00

e str(df): This function displays the structure of a data frame, including the variable names,
data types, and the first few values of each variable.
str(df):
Displaying the structure of the data frame

str(df)

Output:

'data.frame". 4 obs. of 3 variables:

$ Name :chr "John" "Jane" "Alice" "Bob"
$Age :num 25303540

$ Country: chr "USA" "Canada" "UK" "Australia"

e subset(df, condition): This function allows you to subset a data frame based on a
condition. You can specify the condition using logical expressions to filter rows based on
specific criteria.

Subsetting the data frame based on a condition
subset(df, Age > 30)

Output:

Name Age Country
3Alice 35 UK
4 Bob 40 Australia

e unique(df$column): This function returns the unique values in a specific column of a data
frame.

Getting the unique values in the "Country" column
unique(df$Country)

Output:
[1] "USA" "Canada" "UK" "Australia™

o edit():
In R, the edit() function allows you to interactively edit the contents of a data
frame. When you call edit() on a data frame, it opens a spreadsheet-like editor
that allows you to make changes to the data directly.Here's an example of how to
use the edit() function:

Create a sample data frame

df<- data.frame(
Name = c("Alice", "Bob", "Charlie"),
Age = ¢(25, 30, 35),
Gender = ¢("Female", "Male", "Male")

)

Open the data frame in the editor
edit(df)

After executing the code, a separate window or tab will open with the data frame displayed in an
editable format. You can modify the values, add or remove rows, or make any necessary changes
to the data.

N

ROONO OGO A~W®

Noogohkown

0

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course in Statistical Computing

Test Exercise

Answer all questions, each question carries 2 marks

Explain what is “R”?

What are the data structures in R that is used to perform statistical analyses and create
graphs?

Write the example of creating vector in R?

Write the syntax of creating matrix in R?

Write the syntax of creating array in R?

Write the syntax of creating factor in R?

Example for creating Data frames in R?

Example statement for installing packages?

How to print dimensions of ‘df” dataframe

. Write the syntax for break statement

Key

R is data analysis software which is used by analysts, quants, statisticians, data scientists and
others.

Vectors, Matrices, Arrays, Data frames

my_vector <- ¢(1, 2, 3, 4, 5)

matrix(data, nrow, ncol, byrow = FALSE, dimnames = NULL)
array(data, dim, dimnames = NULL)

my_factor <- factor(c("red", "green”, "blue", "red", "green™))
df<- data.frame

(

name = c("Alice", "Bob", "Charlie"),

age = ¢(25, 30, 35),

gender = c("F", "M", "M")

)

install.packages("dplyr")

dim(df)

.for (iin 1:10)

{

if (i==5)
{

break

}

print(i)

}

Class / Section:

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Yalue Added Course - Attendance Register
II B.Sc (MSCS) Year :2022-23 Paper: Statistical Computing

Lecturer: T. Naga Prasada Rao

PS;‘; Roll No Student Name 172(3 145|678 [9(10]|11[12(13]141! 15! Total
L | &\5 5301 K. bhawni PPIRPPIPPPIPPPIPIPIPIPIP[IS
2 | s\ 55302, &) piuvya PLPPIAIPIPIPIPIPIPIPIPIPIPIP N
3 | Q155302 M. gvi {akchmi PIPPIPIAN A PPLPLIPIPIPIRLIPIY
4 | 9155 aol 8. gai Sowmys PILIPIPIPIPLLIAIAIPIPIPIPIPIP 14
5 | Stssaos A Susharth " PIEPIPLPIPIPL PP AIPIPIPIF (B
6 | 9155 306 B. "™Manoj phanindwa PPPLIPPIPPPPPPIPPIPIP|IS
7 9185 301 T- Keerthi priua Pplp P PPPAPPPIPPIPIPIIH
8 I 9lsEIR k. -Alekhya ° PIPPA PIPIPIPIPIPIPIPIPIPIFP Y
9 12155310 NV . PIPIPIPIPIPP AIPLIPIPIPIPIP 4
10 | 1S53l ~A-_chakradhar P PP PPPPLPPLPPIPLIPIIH
11| 9155 319 MD- khadeera kegam PIepIPPIaPIPIPILIPILIPIPIP Y
12| o\S5218 T-_Thanei takshn: PIPIPPIP PIPIPIP PIPIPIPIPIP 15
13| 9155318 K. “Tulasi PP PP PPIPIPIPILIPIPIF | 11
14| s1s5alh P- -Hima 8ri PP PPPPPPPPLPLIPPPIPIIS
15 9185a1Y . naga Stavani PLPIOIPIPPPIPPLIPIPIPTL P Iy
16 | 8155319 M. baiing S PPIPIPRLIAILPPLIPIL PILIRLILPIPIIH
17 01552330 P- Phani Supraja PIPPPIPPAIPPPIL LI P PILIH
18 | 5155291 K. —Hema el Pl PEAR PP P ELRAIT Y
19 191552399 ‘B. _purga Bhavani PIPIPAPPIPPHRPLIPIPIP IH
20 | 5155293 PIPIP PIRLIPPIPP APIPILP P Pl IG

D Na((:}’a Cj'fraegl‘)a

A.G. & S.G. Siddhartha Degree College of Arts & Science

Vuyyuru-521165, Krishna District, Andhra Pradesh
Value Added Course - Attendance Register

Class / Section: 11 B.S¢c (MSCS) Year :2022-23 Paper: Statistical Computing Lecturer: T. Naga Prasada Rao
g‘ﬂ Roll No Student Name 1617 (18 [19 |20 |21 |22 (23 |24 |25 |26 | 27| 28 | 29 | 30 | Total
L | 2158301 K. Dhavani PP PIP PP PO PIPIP PPLPPIPIIL
2 | 2155302 & Divya P PP LD PIPIPPIEIP P
3| 2155303 M. Svi Lalishmi CIPPIOIPPIPIPIPAIPIPIPIPIP It
4 2155304 S: Saj Snwmya PLPPIPIPIAPPLILPL PPILPLIIN
5 | 215k 305 A- Sushanth PPIPIPPIPLPIAPLPPIPLAL H
6 |2)55.306 B. 1Ma00] phanindra pPlpPPIPIP P PIPPPA|IPPIPIMH
7 |215% 304 T:_keerthi' priya PP PIPPPAIPPPIPIPIPPIPL L
8 1915530 k. -Alekhy PIPIPIPIP PPIPIPIPPIPIAIPIP Y
9 12)5R310 N -Anudtha UPPIPIPIPPPIPP PIFP PPIP|IL
10 [2i5m3 A-_chakiadhar plpipipip PIP P PIPIPIPIPILLIS
11 |915K319 MD. khadecd Begam PIPIPIPIPIP PP PAIPIPPIPIIY
12 |2)5R314 T Thansi _|akshni PIPIPIHIPIPIPIPIPPIPIP PIPIP G
13 9155315 K- “Tulasi PIPIPIPP I PIPIPIAIP PIPIPIPIP] Iy
14| 215R316 P alima 8 Plp P PHPPPPPPPPPPIQ}
15 |92 15B31Y K. nlaga aravani PIPIPIPIPIPIPIPIPIPIPIPIPIPIP] IS
16 12156319 M. k&una Qri PlplP AIPIPILIPIPIALPILILILILTIY
17 2156320 . Phan Supraia PIPIPIPIP PP LPIPIPIPILI L] Is
18 2|5 32 ' k. -9lema_gr PIlPPLIAIPAPIE P LLELILPLIPAIY
19 12155822 R. Durga Bhavani PIPILIPILIPLPILIPLPIAIPL LS| IS
2 2155503 D Mﬂc&:’ng@ &irecchy £ P/‘DPP P%)/D/D PILIPFIP | 18
v %ﬁ:ncnpal -
LN %Q Adusumilli Gopalakrishnaiah & Sugarcane Gre-

aff B SE piiinErdy degres- -Beties

FUYYORY -

Siddartha Degree College of Ants & SCIenC

f21 186

Vuyyuru-521 163, RrishnaDistrict

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Department of Computer Science

Value Added Course in Statistical Computing

Feed Back Form
1. Isthe programme interested to you (Yes/No)
2. Have you attended all the session (Yes/No)
3. Is the content of the program is adequate ‘ es/No)
4. Have the teacher covered the entire syllabus? (*¥es/No)
5. Is the number of hours adequate? (ﬁéNo)
6. Do you have any suggestions for enhancing or reducing the (Xes/No)
number of weeks designed for the program?
7. On the whole, is the program useful in terms of enriching (éN o)
your knowledge?
8. Do you have any suggestions on the program?r 1 es/No)

D : " emd-
T R < Q 55 3%)

08 & Be Sapariment of Campats

18 & 95 Sidlheride Bogroe Oafte
YUYYURU. 821 16F

muusumi Gopatanrisniaiarn & Suga .
SiddharthaDegree College of Arts & Scienuc,
Yuyyuru-521 163, Krishna Disuict.

A.G. & 8.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Department of Computer Science

Value Added Course in Statistical Computing’

Feed Back Form
1. Is the programme interested to you (Yes/No)
2. Have you attended all the session es/No)
3. Is the content of the program is adequafe M/No)
4. Have the teacher covered the entire syllabus? @No)
5. Is the number of hours adequate? féfﬁo)
6. Do you have any suggestions for enhancing or reducing the (Yesto/)/
number of weeks designed for the program?
7. On the whole, is the program useful in terms of enriching ‘(XéNo)
your knowledge?
8. Do you have any suggestions on the prograxﬁ? ‘ G@\Io)

“'?-’Q\Q k- Tabs!

o6 Bi (U6 WEPRIUsail Ul WAWYL

a8 & B8 Miiherthe [iogros Sobis. 21553818

ERYTBAL. 021 160

Adusumilli Gopalakrishfiaizh & Suqarcane_aners
Siddhartha Degree College of Arts & Science,
Vuyyuru-521 163, Krishna Disuict

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Department of Computer Science

Value Added Course in Statistical Computing

Feed Back Form
1. Is the programme interested to you (QNO)
2. Have you attended all the session @o)
3. Isthe content of the program is adequate- W{/N())
4. Have the teacher covered the entire syllabus? Mo)
5. Is the number of hours adequate? @))
6. Do you have any suggestions for enhancing or reducing the Q@)

number of weeks designed for the program?

7. On the whole, is the program useful in terms of énriching @_@o)
vour knowledge?

8. Do you have any suggestions on the program? M{))

_.__; P 69
LN
o@ B 0% LAPEILinant Ul wwib,

o8 B 09 ddnortic: Logroe Gt ‘ Z \
FOYYURU. B2 VA)

Adusumilli Gopa akrism;z‘/iah & Sugarcanelaner-
Siddnartha Degree College of Arts & Science,
Vuyyuru-521 165, Krishna District

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Department of Computer Science

Value Added Course in Statistical Computing

Marks List
Class: 11 B.Sc (MISCS)

S. Neo Reoll No. Name of the Student Marks
1 2155301 | K. Dharani 2.0
2 2155302 G. Divya I 8
3 2155303 M. Sri Lakshmi ’ 8
4 2155304 S. Sai Sowmya ! éJ
3 2155305 A. Sushanth QD
6 2155306 B. Manoj Phanindra I 8
7 2155307 J. Keerthi Priya (8
8 2155308 K Alekhya [6
9 2155310 N. Anusha , 8
10 2155311 A. Chakradhar ?’D
1 2155312 MD. Khadeera Begam l 8
12 2155314 | J. Jhansi Lakshmi (B
13 2155315 K. Tulasi f 6
4 2155316 P. Hima Sri { 6
15 2155317 K. Naga Sravani { 8
16 2155319 | M. Karuna Sri 21
17 2155320 P. Phani Supraja Q-O
18 2155321 K. Hema Sri / 6
19 2155322 | R. Durga Bhavani { 8
20 2155323 D. Naga Gireesha / 6

‘j‘v’.

P%m.ipa;

Adusumill Gopalakrisnaiah & Sugarcane e

T 28 B 80 §lidhartha Banree Calive-

o NaVEgreE Lotege of Ards & Scics,

ADUSUMILLI GOPALAKRISHNAIAH AND SUGARCANE GROWERS
SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIENCE,
(AUTONOMOUS) VUYYURU A.P
(Accredited at “A” level by NAAC, Bengaluru)

Department of Computer Science

VALUE ADDED COURSE: Statistical Computing

CERTIFICATE

This is to Certify that G?Q.Iya.of .IE@..Q&CM.S.G.S)).... has successfully completed Value
Added Course in Statistical Computing organised by 1the Department of Computer Science during the Year
2022-2023 and passed the Examination in grade....f...

i "
\ { L
Co-ordinator Head of Department incipal

B Bl AR LEPET ULl) oy X Principal
usumilli }
48 & 80 Skddhorti (grve O Sidharth Dgre a4 SUBATATE G

1o rr—
YUY Y 1N B

ADUSUMILLI GOPALAKRISHNAIAH AND SUGARCANE GROWERS
SIDDHARTHA DEGREE COLLEGE OF ARTS AND SCIEN CE,
(AUTONOMOUS) VUYYURU A.P
(Accredited at “A” level by NAAC, Bengaluru)

Department of Computer Science

VALUE ADDED COURSE: Statistical Computing
CERTIFICATE

This is to Certify that H‘H@ma.ﬁhof :LTB..‘:GCJ\"§C—§) has successfully completed Value

Added Course in Statistical Computing organised by the Department of Computer Science during the Year
2022-2023 and passed the Examination in grade....£\...

\M

Co-ordinator ___Head of Department
el Mok wapoit gy o Phincipal

' Adusumilli lakrishnai e i
8 & 56 Siddieorin Lo 7 %mx%al:;: hr;TlaSrcane‘Gr‘ﬂ 1

