

AdusumilliGopalakrishnaiah& Sugarcane
Growers Siddharatha Degree College of Arts

and Science
Autonomous College :: Aided College of Govt. of AP

NAAC ‘A’ Grade College
Vuyyuru, Krishna (Dt).,Andhra Pradesh-521165

 VALUE ADDED COURSE

TITLE: Statistical Computing

VAC CODE: STCO-001

On 01-04-2023 to 10-05-2023

Duration of the Course: 30DAYS

Organized By

Department of Computer Science

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

(Managed by: Siddhartha Academy of General & Technical Education, Vijayawada-10)

An Autonomous College in the Jurisdiction of Krishna University

Accredited by NAAC with “A” Grade ISO 9001:2015 Certified Institution

DEPARTMENT OF COMPUTER SCIENCE

Value Added Course in Statistical Computing

Name of the Lecturer : Sri. T. Naga Prasada Rao

Class : II B.Sc (MSCS)

Duration of the Course : 30 Days

VAC Code : STCO-001

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course in Statistical Computing

Objectives:

This course will review and expand upon core topics in probability and statistics through the

study and practice of data analysis and graphical interpretation using `R’.

Methodology:

1) Lecture-based Learning

2) Experimental Learning

3) ICT

Duration:

30 Days

A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course in Statistical Computing

Date(s) From: 01-04-2023 to: 10-05-2023

Content Module No.

Introduction to R Programming, Data types of R, Expressions,

Variables, Functions
I

Conditional Statements, Looping statements, Control flow functions II

Arrays, Matrix, Vectors, Factors, Packages III

Data frames, Data frame access, ordering data frames, functions of

data frames
IV

What is R:

R is a programming language and environment used for statistical computing and graphics. It

was first released in 1993 and has since become a popular tool for data analysis and research in

academia, industry, and government.

R is open source software, which means that it is free to use, distribute, and modify. It is highly

extensible and has a large collection of packages and libraries that enable users to perform a wide

range of statistical analyses, data visualization, and machine learning tasks.

R is widely considered to be one of the most powerful and flexible tools for data analysis

available today.

Data types in R:

In R, there are several data types that are used to store and manipulate data. Some of the

commonly used data types in R are:

• Logical:

In R, the logical data type is used to store Boolean values which can take on one of two

possible values: TRUE or FALSE. The logical data type is commonly used in conditional

statements and logical operations.For example, consider the following code:

x <- 5

y <- 10

z <- x < y

In this code, we first assign the value 5 to the variable x and the value 10 to the variable y.

We then use the logical operator "<" to compare x and y, which returns TRUE because x is

less than y. This value is then assigned to the variable z.

• Numeric:

In R, the numeric data type is used to store numbers, including integers and real numbers.

Numeric values are represented by the "numeric" data type in R.Numeric variables can be

used in a variety of operations, including arithmetic operations such as addition, subtraction,

multiplication, and division. For example:

a <- 5

b <- 10

c <- a + b

d <- b - a

e <- a * b

f <- b / a

In this code, we first assign the values 5 and 10 to the variables a and b, respectively. We

then perform various arithmetic operations using these variables, including addition (c),

subtraction (d), multiplication (e), and division (f).

Numeric variables can also be used in statistical calculations and analysis, as well as in

creating graphs and visualizations. In fact, R has many built-in functions and packages that

are specifically designed for statistical analysis and visualization.

• Integer:

In R, the integer data type is used to store whole numbers. Integers are represented by the

"integer" data type in R.Integers can be used in a variety of operations, including arithmetic

operations such as addition, subtraction, multiplication, and division. For example:

a <- 5L

b <- 10L

c <- a + b

d <- b - a

e <- a * b

f <- b / a

In this code, we first assign the values 5 and 10 to the variables a and b, respectively, using

the "L" suffix to indicate that they should be treated as integers. We then perform various

arithmetic operations using these variables, including addition (c), subtraction (d),

multiplication (e), and division (f).

• Character:

A character data type represents text or string values. A character object is created by

enclosing text within quotes (either single or double quotes). For example:

my_string <- "Hello, world!"

In this example, my_string is a character object that contains the text "Hello, world!". Note

that the quotes are required to indicate that this is a character value.

• Double:

A double data type is used to represent floating-point numbers (i.e., numbers with a decimal

point). Double precision is the default for R's numeric data type.For example, you can create

a double variable my_var with the value 3.14159 like this:

my_var <- 3.14159

R provides a variety of operators and functions for working with numeric data, including the

basic arithmetic operators (+, -, *, /), as well as more advanced functions for trigonometry,

logarithms, and other mathematical operations.

• Complex:

A complex data type is used to represent numbers with both a real and imaginary component.

Complex numbers are created using the complex() function or by appending an i or I to the

imaginary component. For example:

Create a complex number using the complex() function

my_complex <- complex(real = 3, imaginary = 4)

Create a complex number using the i notation

my_complex2 <- 2 + 3i

In these examples, my_complex and my_complex2 are both complex numbers. my_complex

has a real component of 3 and an imaginary component of 4, while my_complex2 has a real

component of 2 and an imaginary component of 3.

• Raw:

A raw data type is used to represent raw bytes of data. Raw vectors are created using the

raw() function or by using a hexadecimal notation. For example:

Create a raw vector using the raw() function

my_raw <- raw(4)

my_raw[1] <- as.raw(0x4c)

my_raw[2] <- as.raw(0x6f)

my_raw[3] <- as.raw(0x72)

my_raw[4] <- as.raw(0x65)

Create a raw vector using hexadecimal notation

my_raw2 <- as.raw(c(0x48, 0x65, 0x6c, 0x6c, 0x6f))

In these examples, my_raw and my_raw2 are both raw vectors. my_raw contains the raw

bytes for the ASCII characters "L", "o", "r", and "e", while my_raw2 contains the raw bytes

for the ASCII characters "H", "e", "l", "l", and "o".

Raw vectors are typically used to represent binary data, such as images, audio files, or

network packets. R provides a variety of functions for working with raw vectors, including

functions for reading and writing binary data to files, converting raw data to other formats,

and manipulating the bytes within a raw vector.

Expressions:

In R, an expression is a set of instructions that can be evaluated to produce a value or result.

Expressions can include arithmetic or logical operations, function calls, and variable

assignments.For example, the following code is an expression that calculates the sum of two

numbers:

2 + 3

This expression evaluates to the value 5, which can be printed or assigned to a

variable.Expressions can also include function calls, such as the following code:

sqrt(25)

This expression calls the sqrt() function with an argument of 25, which evaluates to the value 5.

In addition to simple expressions, R also supports more complex expressions that combine

multiple operations and function calls. For example, the following code calculates the factorial of

a number:

factorial<- function(n)

{

if (n == 0)

{

return(1)

}

Else

{

return(n * factorial(n - 1))

 }

}

factorial(5)

This expression defines a function called factorial() that recursively calculates the factorial of a

number. When the expression factorial(5) is evaluated, it returns the value 120.

Variables:

Variables are used to store data values that can be used in expressions or operations. A variable

is created by assigning a value to a name using the assignment operator <- or =. The name of the

variable can contain letters, numbers, underscores, and dots, but it cannot start with a number or

a dot, and it cannot be a reserved keyword.For example, to create a variable called x with a value

of 5, we can use the following code:

x <- 5

We can then use the variable x in an expression or operation, such as:

y <- x + 2

This code assigns the result of adding 2 to the value of x to a new variable called y.

Variables can store values of different types, such as numbers, strings, logical values, and more

complex data structures like arrays and data frames. The type of a variable is determined by the

value it holds, and can be checked using the class() function.

Variables in R are mutable, which means that their values can be changed by assigning a new

value to the same name. For example, we can change the value of x by assigning a new value to

it:

x <- 10

Overall, variables are a fundamental concept in programming and are used extensively in R to

store, manipulate, and analyse data.

Functions:

A function is a set of instructions that perform a specific task and can be called repeatedly with

different inputs. R provides a series of in-built functions, and it allows the user to create their

own functions. Functions are used to avoid repeating the same task and to reduce complexity. A

function should be:

• Written to carry out a specified task.

• May or may not have arguments

• Contain a body in which our code is written.

• May or may not return one or more output values.

Function Definition:

An R function is created by using the keyword 'function'. There is the following syntax of R

function:

func_name <- function(arg_1, arg_2, ...)

{

 Function body

}

Here is an example of a simple function in R:

square<- function(x)

{

result<- x^2

return(result)

}

This function takes an input parameter x, calculates its square, and returns the result as an

output value. To call the function with a specific input value, we can simply pass the value

as an argument:

y <- square(5)

This code calls the square() function with an input value of 5, and assigns the resulting

output value (25) to the variable y.

Conditional Statements:

Conditional statements in R allow you to execute different blocks of code based on the result of a

logical test.

1) if Statement:

The most common conditional statement is the if statement, which has the following

syntax:

if (condition)

{

 # Code to execute if the condition is TRUE

}

For example, the following code uses an if statement to print a message if a

number is positive:

x <- 5

if (x > 0)

{

print("x is positive")

}

This code checks whether x is greater than 0, and if it is, prints the message "x is

positive".

2) if-else statement:

This statement allows you to execute one block of code if a condition is TRUE, and

another block of code if the condition is FALSE. The basic syntax of an if-else statement

in R is as follows:

 if (condition)

 {

 # code to execute if condition is TRUE

 }

 else

 {

 # code to execute if condition is FALSE

 }

 For example:

 x <- -5

 if (x > 0)

 {

 print("x is positive")

 }

 else

 {

 print("x is negative or zero")

 }

Loops:

Loops in R allow you to execute the same block of code multiple times, based on certain

conditions or criteria. The most common types of loops are ‘for’ and ‘while’ loops.

1) For Loop

The ‘for loop’ has the following syntax:

for (variable in sequence)

{

 # Code to execute for each value of the variable

}

For example, the following code uses a for loop to print the first five positive integers:

for (i in 1:5)

{

print(i)

}

This code loops through the sequence 1:5, and for each value of i, prints the value to the

console.

2) While loop:

The while loop has the following syntax:

while (condition)

{

 # Code to execute while the condition is TRUE

}

For example, the following code uses a while loop to print the first five positive even

numbers:

i <- 2

count<- 0

while (count < 5)

{

print(i)

 i <- i + 2

count<- count + 1

}

This code uses a while loop to increment the value of i by 2 for each iteration, until it prints

the first 5 even numbers.

Control Flow Functions:

Control flow functions in R allow you to perform various control operations, such as breaking

out of loops, skipping iterations, and restarting loops. The most common control flow functions

are break, next, and return.

1) Break statement:

The break statement is used to break out of a loop prematurely:

for (i in 1:10)

{

if (i == 5)

{

break

}

print(i)

}

This code loops through the sequence 1:10, and if the value of i is 5, it breaks out of the

loop prematurely.

2) next statement:

The next statement is a control flow statement in R that allows you to skip to the next

iteration of a loop without executing the remaining code in the current iteration. Here is an

example of using the next statement in R:

 for (i in 1:10)

 {

 if (i %% 2 == 0)

 {

 next

 }

 print(i)

 }

In this example, the loop iterates over the values of i from 1 to 10. Inside the loop, the if

statement tests whether i is even (i.e., whether it is divisible by 2 using the modulus operator

%%). If i is even, the next statement is executed, which skips to the next iteration of the loop

without executing the print(i) statement. If i is odd, the print(i) statement is executed, which

prints the value of i.

3) return statement:

The return statement is a control flow statement in R that allows you to terminate a function

and return a value to the calling environment. When a return statement is encountered inside

a function, the function immediately stops executing and returns the specified value to the

calling environment.Here is an example of using the return statement in R:

 sum_squared <- function(x, y)

 {

 result<- x^2 + y^2

 return(result)

 }

 z <- sum_squared(3, 4)

 print(z)

In this example, the sum_squared function takes two arguments (x and y) and returns the

sum of their squares. Inside the function, the result variable is assigned the value of x^2 +

y^2, and then the return(result) statement is executed to return the value of result to the

calling environment. Outside the function, the value returned by sum_squared(3, 4) is

assigned to the variable z, and then the print(z) statement is executed to print the value of z,

which is 25 (i.e., the sum of 3^2 and 4^2).

Array:

An array is a data structure that allows you to store a collection of values of the same data type.

An array can have one or more dimensions, and each dimension can have a specific length.To

create an array in R, you can use the array() function, which has the following syntax:

array(data, dim, dimnames = NULL)

The data parameter specifies the values to be stored in the array, while the dim parameter

specifies the dimensions of the array. The dimnames parameter is an optional argument that can

be used to specify names for the dimensions.

Here is an example of how to create a simple 2-dimensional array in R:

Create a 2x3 array

my_array <- array(c(1:6), dim = c(2, 3))

Print the array

print(my_array)

This code creates a 2-dimensional array with 2 rows and 3 columns, and stores the numbers 1

through 6 in the array. The resulting output will look like this:

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

In R, arrays can be indexed using square brackets [], where each index corresponds to a specific

dimension of the array. For example, to access the value at row 1, column 2 of the my_array

array, you can use the following code:

value<- my_array[1, 2]

This code assigns the value 3 to the variable value, which corresponds to the value at row 1,

column 2 of the array.

Matrix:

A matrix is a two-dimensional data structure that contains a collection of values of the same data

type. The matrix can be thought of as a grid or table of values, where each row represents a

separate observation or case, and each column represents a separate variable.To create a matrix

in R, you can use the matrix() function, which has the following syntax:

matrix(data, nrow, ncol, byrow = FALSE, dimnames = NULL)

The data parameter specifies the values to be stored in the matrix, while the nrow and ncol

parameters specify the number of rows and columns in the matrix, respectively. The byrow

parameter is an optional argument that can be used to specify whether the values should be filled

in by row or by column, and the dimnames parameter is an optional argument that can be used to

specify names for the rows and columns.Here is an example of how to create a simple 2x3 matrix

in R:

Create a 2x3 matrix

my_matrix <- matrix(c(1, 2, 3, 4, 5, 6), nrow = 2, ncol = 3)

Print the matrix

print(my_matrix)

This code creates a 2x3 matrix with the values 1 through 6, and stores the matrix in the variable

my_matrix. The resulting output will look like this:

 [,1] [,2] [,3]

[1,] 1 3 5

[2,] 2 4 6

In R, matrices can be indexed using square brackets [], where the first index corresponds to the

row number and the second index corresponds to the column number. For example, to access the

value in row 1, column 2 of the my_matrix matrix, you can use the following code:

value<- my_matrix[1, 2]

This code assigns the value 3 to the variable value, which corresponds to the value at row 1,

column 2 of the matrix.

Vectors:

A vector is a one-dimensional data structure that contains a collection of values of the same data

type. The vector can be thought of as a simple list or array of values, and is often used to store a

single variable or observation.

To create a vector in R, you can use the c() function, which is short for "combine". This function

takes one or more values as arguments and combines them into a vector. Here is an example of

how to create a simple vector in R:

Create a vector

my_vector <- c(1, 2, 3, 4, 5)

Print the vector

print(my_vector)

This code creates a vector with the values 1 through 5, and stores the vector in the variable

my_vector. The resulting output will look like this:

 [1] 1 2 3 4 5

In R, vectors can be indexed using square brackets [], where each index corresponds to a

specific element of the vector. For example, to access the value at position 3 of the my_vector

vector, you can use the following code:

value<- my_vector[3]

This code assigns the value 3 to the variable value, which corresponds to the third element of the

vector.

Factors:

A factor is a data structure that represents categorical data. Factors are used to store data that can

take on a limited number of possible values, such as nominal or ordinal data. Factors are useful

in statistical analysis because they allow you to easily summarize and analyze categorical data.

To create a factor in R, you can use the factor() function, which takes one or more vectors as

arguments and returns a factor object. Here is an example of how to create a simple factor in R:

Create a factor

my_factor <- factor(c("red", "green", "blue", "red", "green"))

Print the factor

print(my_factor)

This code creates a factor with the values "red", "green", and "blue", and stores the factor in the

variable my_factor. The resulting output will look like this:

 [1] red green blue red green

Levels: blue green red

In this example, the factor has three possible levels: "blue", "green", and "red". The levels of a

factor are determined by the unique values in the vector that is used to create the factor.

You can also assign labels to the levels of a factor using the levels() function. For example:

Assign labels to the levels of the factor

levels(my_factor) <- c("R", "G", "B")

Print the factor with labels

print(my_factor)

This code assigns the labels "R", "G", and "B" to the levels of the my_factor factor, and prints

the factor with the labels.

R Packages:

A package is a collection of functions, data sets, and other resources that are designed to work

together to solve a specific problem or accomplish a specific task. R packages are created and

maintained by developers and are hosted on public repositories such as CRAN (Comprehensive

R Archive Network) and GitHub.

To use a package in R, you first need to install it using the install.packages() function. For

example, to install the dplyr package, which is a popular package for data manipulation, you can

run the following code:

install.packages("dplyr")

Once the package is installed, you can load it into your R session using the library() function:

library(dplyr)

This makes all of the functions and data sets in the dplyr package available for use in your R

code.

In addition to the base R functions and packages, there are thousands of third-party packages

available for R that can be used for a wide range of tasks, including data manipulation, statistical

analysis, machine learning, data visualization, and more. Some popular packages in R include

ggplot2, tidyr, caret, randomForest, and shiny.

If you want to create your own package in R, you can use the devtools package to help you set

up and manage the package. The devtools package provides functions for creating and building

packages, adding documentation, and testing the package code.

Data frames:

A data frame is a two-dimensional array-like structure or a table in which a column contains

values of one variable, and rows contains one set of values from each column. A data frame is a

special case of the list in which each component has equal length.

A data frame is used to store data table and the vectors which are present in the form of a list in a

data frame, are of equal length.In a simple way, it is a list of equal length vectors. A matrix can

contain one type of data, but a data frame can contain different data types such as numeric,

character, factor, etc.

There are following characteristics of a data frame.

• The columns name should be non-empty.

• The rows name should be unique.

• The data which is stored in a data frame can be a factor, numeric, or character type.

• Each column contains the same number of data items.

Data frames in R are usually created by importing data from external sources, such as CSV files

or databases. They can also be constructed directly in R using functions like data.frame() or by

converting other types of R objects like matrices or lists using functions like as.data.frame().

Once a data frame is created, you can manipulate and analyze the data using a wide range of

built-in functions and packages in R. Some common operations include selecting, filtering, and

sorting rows and columns, calculating summary statistics, and creating visualizations.

Here is an example of creating a simple data frame in R:

 # create a data frame

 df<- data.frame

 (

 name = c("Alice", "Bob", "Charlie"),

 age = c(25, 30, 35),

 gender = c("F", "M", "M")

)

 # print the data frame

 print(df)

 This will create a data frame with three columns (name, age, gender) and three

rows (one for each person), and print it to the console:

name age gender

1 Alice 25 F

2 Bob 30 M

3 Charlie 35 M

Data frame access:

In R, you can access and manipulate data frames using various methods. Here are some common

ways to access data frames:

Consider the following data frame named df:

Creating a sample data frame

df<- data.frame(

 Name = c("John", "Jane", "Alice", "Bob"),

 Age = c(25, 30, 35, 40),

 Country = c("USA", "Canada", "UK", "Australia")

)

Print the data frame

Output:

 Name Age Country

1 John 25 USA

2 Jane 30 Canada

3 Alice 35 UK

4 Bob 40 Australia

Accessing Columns:

You can access columns of a data frame using the dollar sign $ or square brackets [] notation.

Here's an example:

Using the dollar sign notation

df$column_name

Accessing the "Name" column using the dollar sign notation

df$Name

Output:

 [1] "John" "Jane" "Alice" "Bob"

Using the square brackets notation

df["column_name"]

Accessing the "Country" column using the square brackets notation

df["Country"]

Output:

1 USA

2 Canada

3 UK

4 Australia

Accessing Rows:

You can access rows of a data frame using the square brackets [] notation. Here's an example:

Accessing a single row

df[row_index,]

Accessing the second row

df[2,]

Output:

 Name Age Country

2 Jane 30 Canada

Accessing multiple rows

df[row_indices,]

Accessing multiple rows (3rd and 4th rows)

df[3:4,]

Output:

 Name Age Country

3 Alice 35 UK

4 Bob 40 Australia

Accessing Specific Cells:

You can access individual cells in a data frame using the square brackets [] notation with row

and column indices. Here's an example:

df[row_index, column_index]

Accessing the cell in the third row and second column

df[3, 2]

Output:

 [1] 35

Accessing Rows Based on Conditions:

You can use logical conditions to access rows based on specific criteria. Here's an

example:

Accessing rows where a condition is true

df[condition,]

Accessing rows where the age is greater than or equal to 30

df[df$Age >= 30,]

Output:

 Name Age Country

2 Jane 30 Canada

3 Alice 35 UK

4 Bob 40 Australia

Ordering data frames:

In R, you can order or sort a data frame based on specific columns using the order() function or

the dplyr package's arrange() function. Let's explore both approaches with examples.

Using the order() function

Consider the following data frame df:

Creating a sample data frame

df<- data.frame(

 Name = c("John", "Jane", "Alice", "Bob"),

 Age = c(25, 30, 35, 40),

 Country = c("USA", "Canada", "UK", "Australia")

)

Print the data frame

df

Output:

 Name Age Country

1 John 25 USA

2 Jane 30 Canada

3 Alice 35 UK

4 Bob 40 Australia

Now, let's order the data frame based on the Age column:

Ordering the data frame by Age column

df_ordered <- df[order(df$Age),]

Print the ordered data frame

df_ordered

Output:

 Name Age Country

1 John 25 USA

2 Jane 30 Canada

3 Alice 35 UK

4 Bob 40 Australia

The data frame df_ordered is now sorted based on the Age column in ascending order.

Using the arrange() function from dplyr package

First, make sure you have the dplyr package installed by running install.packages("dplyr"). Then,

you can load the package and use the arrange() function:

Loading the dplyr package

library(dplyr)

Ordering the data frame by Age column using arrange()

df_ordered <- arrange(df, Age)

Print the ordered data frame

df_ordered

Output:

 Name Age Country

1 John 25 USA

2 Jane 30 Canada

3 Alice 35 UK

4 Bob 40 Australia

Functions for data frames:

In R, there are several useful functions available for working with data frames. Here are some

commonly used functions for data frames:

Creating a sample data frame

df<- data.frame(

 Name = c("John", "Jane", "Alice", "Bob"),

 Age = c(25, 30, 35, 40),

 Country = c("USA", "Canada", "UK", "Australia")

)

Print the data frame

df

Output:

 Name Age Country

1 John 25 USA

2 Jane 30 Canada

3 Alice 35 UK

4 Bob 40 Australia

• head(df) and tail(df): These functions display the first few rows (head()) or last few rows

(tail()) of a data frame. By default, they show the first/last six rows, but you can specify a

different number of rows if needed.

Displaying the first few rows of the data frame

head(df)

Output:

 Name Age Country

1 John 25 USA

2 Jane 30 Canada

3 Alice 35 UK

Displaying the last few rows of the data frame

tail(df)

Output:

 Name Age Country

1 John 25 USA

2 Jane 30 Canada

3 Alice 35 UK

4 Bob 40 Australia

• nrow(df) and ncol(df): These functions return the number of rows (nrow()) or number of

columns (ncol()) in a data frame.

nrow(df) and ncol(df):

Getting the number of rows in the data frame

nrow(df)

Output:

 [1] 4

Getting the number of columns in the data frame

ncol(df)

Output:

 [1] 3

• dim(df): This function returns a vector containing the dimensions of the data frame, i.e.,

the number of rows and columns.

Getting the dimensions of the data frame

dim(df)

Output:

[1] 4 3

• names(df) and colnames(df): These functions return the column names of a data frame as

a character vector.

Getting the column names of the data frame

names(df)

Output:

 [1] "Name" "Age" "Country"

• summary(df): This function provides a summary of the data frame, including descriptive

statistics (e.g., minimum, maximum, mean) for each numeric column and frequency

counts for each categorical column.

Getting the summary of the data frame

summary(df)

Output:

 Name Age Country

 Length:4 Min. :25.00 Length:4

Class :character 1st Qu.:27.50 Class :character

Mode :character Median :32.50 Mode :character

 Mean :32.50

 3rd Qu.:37.50

 Max. :40.00

• str(df): This function displays the structure of a data frame, including the variable names,

data types, and the first few values of each variable.

str(df):

Displaying the structure of the data frame

str(df)

Output:

'data.frame': 4 obs. of 3 variables:

 $ Name : chr "John" "Jane" "Alice" "Bob"

 $ Age : num 25 30 35 40

 $ Country: chr "USA" "Canada" "UK" "Australia"

• subset(df, condition): This function allows you to subset a data frame based on a

condition. You can specify the condition using logical expressions to filter rows based on

specific criteria.

Subsetting the data frame based on a condition

subset(df, Age > 30)

Output:

 Name Age Country

3 Alice 35 UK

4 Bob 40 Australia

• unique(df$column): This function returns the unique values in a specific column of a data

frame.

Getting the unique values in the "Country" column

unique(df$Country)

Output:

 [1] "USA" "Canada" "UK" "Australia"

• edit():

In R, the edit() function allows you to interactively edit the contents of a data

frame. When you call edit() on a data frame, it opens a spreadsheet-like editor

that allows you to make changes to the data directly.Here's an example of how to

use the edit() function:

Create a sample data frame

df<- data.frame(

 Name = c("Alice", "Bob", "Charlie"),

 Age = c(25, 30, 35),

 Gender = c("Female", "Male", "Male")

)

Open the data frame in the editor

edit(df)

After executing the code, a separate window or tab will open with the data frame displayed in an

editable format. You can modify the values, add or remove rows, or make any necessary changes

to the data.

 A.G. & S.G. Siddhartha Degree College of Arts & Science
Vuyyuru-521165, Krishna District, Andhra Pradesh

Value Added Course in Statistical Computing

Test Exercise

Answer all questions, each question carries 2 marks

1. Explain what is “R”?

2. What are the data structures in R that is used to perform statistical analyses and create

graphs?

3. Write the example of creating vector in R?

4. Write the syntax of creating matrix in R?

5. Write the syntax of creating array in R?

6. Write the syntax of creating factor in R?

7. Example for creating Data frames in R?

8. Example statement for installing packages?

9. How to print dimensions of ‘df’ dataframe

10. Write the syntax for break statement

Key

1. R is data analysis software which is used by analysts, quants, statisticians, data scientists and

others.

2. Vectors, Matrices, Arrays, Data frames

3. my_vector <- c(1, 2, 3, 4, 5)

4. matrix(data, nrow, ncol, byrow = FALSE, dimnames = NULL)

5. array(data, dim, dimnames = NULL)

6. my_factor <- factor(c("red", "green", "blue", "red", "green"))

7. df<- data.frame

(

name = c("Alice", "Bob", "Charlie"),

age = c(25, 30, 35),

gender = c("F", "M", "M")

)

8. install.packages("dplyr")

9. dim(df)

10. for (i in 1:10)

{

if (i == 5)

{

break

}

print(i)

}

